Distance problems within Helly graphs and k-Helly graphs
نویسندگان
چکیده
The ball hypergraph of a graph G is the family balls all possible centers and radii in G. Balls subfamily are k-wise intersecting if intersection any k always nonempty. Helly number least integer greater than one such that every has nonempty common intersection. A k-Helly (or Helly, k=2) its at most k. We prove central vertex medians an n-vertex m-edge can be computed w.h.p. O˜(mn) time. Both results extend to broader setting where we assign nonnegative cost vertices. For fixed k, also present O˜(mkn)-time randomized algorithm for radius computation within graphs. If relax definition (for what sometimes called “almost Helly-type” property literature), then our approach leads approximation computing with additive one-sided error some constant.
منابع مشابه
Biclique-Helly Graphs
A graph is biclique-Helly when its family of (maximal) bicliques is a Helly family. We describe characterizations for biclique-Helly graphs, leading to polynomial time recognition algorithms. In addition, we relate biclique-Helly graphs to the classes of clique-Helly, disk-Helly and neighborhood-Helly graphs.
متن کاملFaster recognition of clique-Helly and hereditary clique-Helly graphs
A family of subsets of a set is Helly when every subfamily of it, which is formed by pairwise intersecting subsets contains a common element. A graph G is cliqueHelly when the family of its (maximal) cliques is Helly, while G is hereditary clique-Helly when every induced subgraph of it is clique-Helly. The best algorithms currently known to recognize clique-Helly and hereditary clique-Helly gra...
متن کاملClique graphs of Helly circular arc graphs
Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove th...
متن کاملProper Helly Circular-Arc Graphs
A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...
متن کاملComputational Complexity of Classical Problems for Hereditary Clique-helly Graphs
A graph is clique-Helly when its cliques satisfy the Helly property. A graph is hereditary clique-Helly when every induced subgraph of it is clique-Helly. The decision problems associated to the stability, chromatic, clique and clique-covering numbers are NP-complete for clique-Helly graphs. In this note, we analyze the complexity of these problems for hereditary clique-Helly graphs. Some of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2023
ISSN: ['1879-2294', '0304-3975']
DOI: https://doi.org/10.1016/j.tcs.2023.113690